Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 104(supl.1): 281-287, July 2009. tab
Article in English | LILACS | ID: lil-520890

ABSTRACT

Vaccines have had an unquestionable impact on public health during the last century. The most likely reason for the success of vaccines is the robust protective properties of specific antibodies. However, antibodies exert a strong selective pressure and many microorganisms, such as the obligatory intracellular parasite Trypanosoma cruzi, have been selected to survive in their presence. Although the host develops a strong immune response to T. cruzi, they do not clear the infection and instead progress to the chronic phase of the disease. Parasite persistence during the chronic phase of infection is now considered the main factor contributing to the chronic symptoms of the disease. Based on this finding, containment of parasite growth and survival may be one method to avoid the immunopathology of the chronic phase. In this context, vaccinologists have looked over the past 20 years for other immune effector mechanisms that could eliminate these antibody-resistant pathogens. We and others have tested the hypothesis that non-antibody-mediated cellular immune responses (CD4+ Th1 and CD8+ Tc1 cells) to specific parasite antigens/genes expressed by T. cruzi could indeed be used for the purpose of vaccination. This hypothesis was confirmed in different mouse models, indicating a possible path for vaccine development.


Subject(s)
Animals , Mice , /immunology , /immunology , Chagas Disease/immunology , Protozoan Vaccines/immunology , Trypanosoma cruzi/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Chagas Disease/prevention & control , Disease Models, Animal , Immunity, Cellular , Trypanosoma cruzi/genetics
2.
Braz. j. microbiol ; 39(1): 44-49, Jan.-Mar. 2008. ilus, graf
Article in English | LILACS, SES-SP | ID: lil-480672

ABSTRACT

Bacterial flagellins are important virulence-associated factors and strong inducers of inflammatory responses in mammalian hosts. Flagellins have also been investigated as potential vaccine adjuvants, either for induction of humoral or cellular immune responses, to different target antigens. In this study we investigated the adjuvant properties of three Salmonella enterica flagellins types (FliCd, FliCi and FljB) to an ovalbumin-derived CD8+ T cell-restricted epitope (OVA257264). Although mice immunized with the three tested flagellins elicited antigen-specific activated CD8+ T cells, only animals immunized with FliCi and FliCd flagellins admixed with ovalbumin mounted specific in vivo cytotoxic responses to peptide-pulsed target cells. The present results indicate that Salmonella flagellins are endowed with type-specific adjuvant effects toward murine CD8+ T cells, a feature that may impact their use as adjuvants for prophylatic or therapeutic vaccines.


As flagelinas bacterianas são importantes fatores associados à virulência e potentes indutores de resposta inflamatória em mamíferos. Estas moléculas são também investigadas como potencial adjuvante para uso em vacinas na indução de resposta imune humoral e celular para diferentes antígenos alvo. No presente estudo investigamos as propriedades adjuvantes de três tipos de flagelinas de Salmonella enterica (FliCd, FliCi e FljB) para um epítopo derivado da ovalbumina específico para células T CD8+. As três flagelinas testadas induziram respostas de células T CD8+ específicas em camundongos imunizados, porém, somente animais imunizados com as flagelinas FliCi e FliCd co-administradas com ovalbumina montaram resposta citotóxica específica in vivo para células-alvo pulsadas com peptídeo OVA. Os resultados apresentados indicam que flagelinas de Salmonella são dotadas de efeitos adjuvantes tipo-específico frente a células T CD8+ in vivo, uma característica que pode gerar impactos no uso dessas proteínas como adjuvantes em vacinas profiláticas ou terapêuticas.


Subject(s)
Animals , Adjuvants, Immunologic , Flagellin/analysis , Flagellin/isolation & purification , In Vitro Techniques , T-Lymphocytes , Salmonella enterica/isolation & purification , Vaccines/analysis , Methods , Virulence
3.
Mem. Inst. Oswaldo Cruz ; 102(3): 313-318, June 2007. tab, graf
Article in English | LILACS | ID: lil-452508

ABSTRACT

Recently, we generated two bacterial recombinant proteins expressing 89 amino acids of the C-terminal domain of the Plasmodium vivax merozoite surface protein-1 and the hexa-histidine tag (His6MSP1(19)). One of these recombinant proteins contained also the amino acid sequence of the universal pan allelic T-cell epitope (His6MSP1(19)-PADRE). In the present study, we evaluated the immunogenic properties of these antigens when administered via the intra-nasal route in the presence of distinct adjuvant formulations. We found that C57BL/6 mice immunized with either recombinant proteins in the presence of the adjuvants cholera toxin (CT) or the Escherichia coli heat labile toxin (LT) developed high and long lasting titers of specific serum antibodies. The induced immune responses reached maximum levels after three immunizing doses with a prevailing IgG1 subclass response. In contrast, mice immunized by intranasal route with His6MSP1(19)-PADRE in the presence of the synthetic oligonucleotides adjuvant CpG ODN 1826 developed lower antibody titers but when combined to CT, CpG addition resulted in enhanced IgG responses characterized by lower IgG1 levels. Considering the limitations of antigens formulations that can be used in humans, mucosal adjuvants can be a reliable alternative for the development of new strategies of immunization using recombinant proteins of P. vivax.


Subject(s)
Humans , Animals , Female , Mice , Immunoglobulin G/immunology , Malaria Vaccines/immunology , Malaria, Vivax/immunology , Merozoite Surface Protein 1/immunology , Plasmodium vivax/immunology , Adjuvants, Immunologic , Administration, Intranasal , Immunity, Cellular/immunology , Immunity, Mucosal/drug effects , Immunoglobulin G/blood , Malaria Vaccines/administration & dosage , Malaria, Vivax/prevention & control , Merozoite Surface Protein 1/administration & dosage , Merozoite Surface Protein 1/genetics , Recombinant Proteins/immunology , Vaccines, Synthetic/immunology
4.
Mem. Inst. Oswaldo Cruz ; 102(3): 335-340, June 2007. tab, graf
Article in English | LILACS | ID: lil-452511

ABSTRACT

In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5 percent respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.


Subject(s)
Humans , Animals , Antibodies, Protozoan/immunology , Immunoglobulin G/immunology , Malaria, Vivax/immunology , Merozoite Surface Protein 1/immunology , Plasmodium vivax/immunology , Enzyme-Linked Immunosorbent Assay , Merozoite Surface Protein 1/chemistry , Recombinant Proteins/immunology
5.
An. acad. bras. ciênc ; 75(4): 443-468, Dec. 2003. ilus, tab
Article in English | LILACS | ID: lil-348799

ABSTRACT

Obligatory intracellular parasites such as Plasmodium sp, Trypanosoma cruzi, Toxoplasma gondii and Leishmania sp are responsible for the infection of hundreds of millions of individuals every year. These parasites can deliver antigens to the host cell cytoplasm that are presented through MHC class I molecules to protective CD8 T cells. The in vivo priming conditions of specific CD8 T cells during natural infection are largely unknown and remain as an area that has been poorly explored. The antiparasitic mechanisms mediated by CD8 T cells include both interferon-g-dependent and -independent pathways. The fact that CD8 T cells are potent inhibitors of parasitic development prompted many investigators to explore whether induction of these T cells can be a feasible strategy for the development of effective subunit vaccines against these parasitic diseases. Studies performed on experimental models supported the hypothesis that CD8 T cells induced by recombinant viral vectors or DNA vaccines could serve as the basis for human vaccination. Regimens of immunization consisting of two different vectors (heterologous prime-boost) are much more efficient in terms of expansion of protective CD8 T lymphocytes than immunization with a single vector. The results obtained using experimental models have led to clinical vaccination trials that are currently underway


Subject(s)
Animals , Humans , Mice , Antigens, Protozoan , CD8-Positive T-Lymphocytes , Immunization , Protozoan Infections , Protozoan Vaccines , Immunity, Cellular , Vaccines, DNA
6.
Ciênc. cult. (Säo Paulo) ; 51(5/6): 411-28, set.-dez. 1999. ilus, tab
Article in English | LILACS | ID: lil-260627

ABSTRACT

To understand the interaction of Trypanosoma cruzi and the immune system of the vertebrate host, and therefore the pathophysiology of Chagas' disease, different research groups have focused their attention on the identification and characterization of parasite molecules involved in the activation of either innate or adaptive immune responses. The parasite surface molecules that serve as targets of the vertebrate host immune system have also been studied and identified. These studies have revealed that the quatitatively dominant complex of glycosylphosphatidylinositol (GPI)-anchored molecules (GIPLs, mucins and TS) present on the surface of T. cruzi trypomastigotes are essential to control activation of the innate immune system and promote initiation of acquired immune responses in the vertebrate host. Two major families of surface glycoproteins (mucin-like glycoproteins and transialidases) have also been shown to be important targets of parasite specific humoral and cellular immune responses. They are, thus, important candidates for vaccine development as determined in studies using experimental models. Studies regarding the molecular cloning and/or biochemical characterization of the above mentioned T. cruzi surface molecules, and their ability to influence the outcome of T. cruzi infection in the vertebrate host through the stimulation and/or control of the immune system are presently reviewed. A proposition is made that such molecules may have evolved and been selectively conserved to establish an equilibrium between the parasite and its vertebrate host, limiting parasite replication, but allowing parasite persistence and host survival, thus favoring the maintenance of T. cruzi life cycle.


Subject(s)
Animals , Chagas Disease/physiopathology , Glycoconjugates/physiology , Trypanosoma cruzi/immunology , Life Cycle Stages , Host-Parasite Interactions , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/physiology , Vertebrates/immunology , Vertebrates/parasitology
7.
Mem. Inst. Oswaldo Cruz ; 86(2): 153-8, Apr.-Jun. 1991. tab
Article in English | LILACS, SES-SP | ID: lil-109202

ABSTRACT

The cellular immune response to the circumsporozoite (CS) protein of plasmodium vivax of individuals from malaria-endemic areas of Brazil was studied. We examined the in vitro proliferative response of the peripheral blood mononuclear cells (PBMC) of 22 individuals when stimulated with a CS recombinant protein (rPvCS-2) and two other synthetic peptides based on the sequenceof the P. vivax CS protein. Seven of the individuals from malaria-endemic area displayed an antigen specific in vitro proliferative responseto the recombinant protein PvCS-2 and one out of 6, proliferative response to the peptide 308-320. In contrast, none of the individuals displayed a proliferative reponse when stimulated with the D/A peptide which represent some of the repeated units present in this CS protein. Our study, therefore, provides evidence for the presence, withinthe major surface antigen of P. vivax sporozoites, of epitopes capble to induce proliferation of human PBMC


Subject(s)
Humans , Male , Female , Child , Adult , Middle Aged , Plasmodium vivax/chemistry , Leukocytes, Mononuclear/chemistry , Malaria/immunology , Antigens, Protozoan/physiology , In Vitro Techniques , Plasmodium vivax/immunology , Immunity, Cellular , Antigens, Protozoan/analysis
SELECTION OF CITATIONS
SEARCH DETAIL